Biocompatibility of a polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+) for neural implants

نویسندگان

  • Fredrik Ejserholm
  • John Stegmayr
  • Patrik Bauer
  • Fredrik Johansson
  • Lars Wallman
  • Martin Bengtsson
  • Stina Oredsson
چکیده

BACKGROUND The flexibility of implantable neural probes has increased during the last 10 years, starting with stiff materials such as silicone to more flexible materials like polyimide. We have developed a novel polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+, consisting of a thiol, two allyls, an epoxy resin and two initiators), which is up to 100 times more flexible than polyimide. Since a flexible neural probe should be more biocompatible than a stiff probe, an OSTE+ probe should be more biocompatible than one composed of a more rigid material. We have investigated the toxicity of OSTE+ as well as of OSTE+ that had been incubated in water for a week (OSTE+H2O) using MTT assays with mouse L929 fibroblasts. We found that OSTE+ showed cytotoxicity, but OSTE+H2O did not. Extracts were analyzed using LC-MS and GC-MS in order to identify leaked chemicals. RESULTS Most constituents were found in extracts of OSTE+, whereas only initiators were found in OSTE+H2O extracts. The detected levels of each chemical found in the LC-MS and the GC-MS analysis were below the toxicity level when compared to MTT assays of all the individual chemicals, except for one of the initiators that had an IC50 value close to the detected levels. CONCLUSION Our notion is that the toxicity of OSTE+ was caused by one of the initiators, by impurities in the constituents or by synergistic effects of low doses of leaked chemicals. However, our conclusion is that if OSTE+ is incubated for one week in water, OSTE+ is not cytotoxic and suitable for further in vivo studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step ...

متن کامل

High-resolution Micropatterning of Off-stochiometric Thiol-enes (oste) via a Novel Lithography Mechanism

We present an entirely novel, self-limiting photolithography mechanism in off-stoichiometry thiol-ene (OSTE) polymers enabling high-resolution and high-aspect ratio features. The OSTE polymers have previously been shown to be promising materials for fabrication of microfluidic devices with tailored surface modifications and mechanical properties. We here introduce direct lithography for micropa...

متن کامل

Low Gas Permeable and Non-absorbent Rubbery Oste+ for Pneumatic Microvalves

In this paper we introduce a new polymer for use in microfluidic applications, based on the off-stoichiometric thiol–ene-epoxy (OSTE+) polymer system, but with rubbery properties. We characterize and benchmark the new polymer against PDMS. We demonstrate that Rubbery OSTE+: has more than 90% lower permeability to gases compared to PDMS, has little to no absorption of dissolved molecules, can be...

متن کامل

Biocompatibility of Oste Polymers Studied by Cell Growth Experiments

The recently introduced OSTE polymer technology has shown very useful features for microfluidics for lab-on-a-chip applications. However, no data has yet been published on cell viability on OSTE. In this work, we study the biocompatibility of three OSTE formulations by cell growth experiments. Moreover, we investigate the effect of varying thiol excess on cell viability on OSTE surfaces. The re...

متن کامل

Direct Lithography of Rubbery Oste+ Polymer

We present a Rubbery, Off-Stoichiometric Thiol-Ene-epoxy (OSTE+) polymer for direct lithography manufacturing, demonstrate its use in pneumatic pinch microvalves for lab-on-chip applications, test the lithography process achieving pillars of aspect-ratios (a.r.) 1:8, and characterize it’s surface as hydrophilic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2015